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Abstract. In this paper several examples of integrable potentials with a second invariant 
which contains a logarithmic part in the velocities are given. In most cases the potential 
depends on  the velocities. There is, however, a case where the potential is velocity 
independent. 

1. Introduction 

Direct construction of planar integrable potentials possessing an integral of motion of 
a prescribed form can be obtained by a method due to Bertrand (1852). Darboux 
(1901) obtained the general form for a velocity-independent potential in order to 
possess a second invariant, quadratic in the velocities. These results are also presented 
in Whittaker ( 1 9 3 7 , ~  332). Dorizzi et af (1983) and Ankiewicz and Pask (1983) 
completed the above results for a case not considered by the former authors. 

Polynomial integrals of motion of degree greater than 2 for planar systems have 
been found by this method and by other methods as well and the results in this field 
can be found in a review by Hietarinta (1986). 

Bozis and Ichtiaroglou (1987) attacked the problem from a different point of view, 
i.e. they found necessary and sufficient conditions in order for a given function of 
position and velocity to be an integral of motion of a planar force field not given in 
advance. The case of velocity-dependent potentials has also been studied and in the 
generic case, if the given function satisfies certain conditions, the corresponding force 
field is determined uniquely. 

Integrable velocity-dependent potentials which possess linear or quadratic 
invariants in the velocity have been found by Dorizzi et af (1985). Very few, however, 
are the results capcerning transcendental invariants. A few examples are given in 
Hietarinta (1984?, among which is included a logarithmic invariant. More systemati- 
cally, transcendental invariants which are arbitrary functions of two different poly- 
nomials in velocities are studied in Hietarinta (1986, pp 70-83) where, in two cases, 
logarithmic invariants are found. 

In this paper we construct integrable planar potentials which possess a second 
integral of motion of the form 

I = F,x+ F 2 j  + F,+lnlG,x+ G , j +  G31 
where F, and G, are functions of x, y. We do not attempt to find all systems possessing 
an invariant of the above form. However we offer several examples of such systems. 
Since function I does not have a definite parity under time reflection, most potentials 
are velocity dependent, i.e. they correspond to motion in a rotating system or under 
the influence of electromagnetic forces. 

0305-4470/88/ 183537 + 10$02.50 @ 1988 IOP Publishing Ltd 3537 
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2. General remarks on the form of the invariant 

We consider a particle of unit mass moving on the xy plane under the influence of 
the velocity-dependent potential 

V =  U ( x , y ) + A ( x , y ) x + B ( x , y ) j .  (1) 

Only linear terms in the velocity are included in ( l ) ,  since otherwise the given forces 
would be functions of the accelerations, which is inadmissible in Newtonian dynamics 
(e.g. Pars 1965, p 82). 

The corresponding accelerations are given by 

x = - U, +ay 
y = - U,. -nx 

( 2 a )  

( 2 6 )  

where subscripts denote partial differentiation, and 

W X ,  Y )  = A, - B x .  (3) 

Because of the gauge invariance of (2),  functions A and B in (1) cannot be determined 
uniquely, so we consider that the velocity-dependent potential V is determined if 
functions U ( x ,  y )  and n(x, y )  are defined. 

We suppose that system (l), besides the energy integral 

E = i ( x 2 + y 2 ) +  U ( x , y )  (4) 

I = FIX + F 2 j  + F3+ln~Glx  + G2y + G31 

possesses a second invariant of the form 

( 5 )  

where F,, G, are functions of x, y. In order that I is an integral of motion of system 
( l ) ,  it must hold identically: 

d I/ d t = IxX + I , j  + I,( - U, + fly) + I+( - U,. - f l X )  

G, FIX = 0 ( 7 a )  

0. (6) 

Equation (6) yields the equations 
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Since the logarithmic part in ( 5 )  is always supposed to contain velocity-dependent 
terms (otherwise I becomes merely linear in the velocities), at least one of the functions 
G ,  and G2 must be different from zero. In this case, equations (7)  yield the solution 

F, = Sy + E ( I l a )  

F 2 = - S x + 5  (116) 

where 8, E ,  5 are arbitrary constants. 
At this point we observe that, as long as functions G, are not determined, function 

F3 can be chosen arbitrarily, which is equivalent to the extraction of a suitable common 
factor out of the logarithmic part of I. The polynomial in the logarithmic part can also 
be divided by any constant, since it corresponds to addition of a constant to I. 

We select F3 such that 

F3, = R F2 (12a) 

F3, = -OF,. (126) 

If we take into account equations ( l l ) ,  from (12)  we obtain 

F3 = F3(u) (13)  

and 

fl= R(u) = - F3,, (14) 

where 

U = $ ( X 2  + y’ )  + Ey - 5x. 

It is understood that (12) also restrict the form of R, since it must be a function 

Equations (8), with the help of ( 1 1 )  and (12), take the form 
of U. 

G , ,  = O  ( 1 6 ~ )  

G2, + G , ,  = 0 (166) 

G2, = 0 ( 1 6 ~ )  

with the solution 

G ,  = a y  + /3 
G2 = - a x  + y 

( 1 7 4  

( 1 7 ~  

where a, p, y are arbitrary constants. Taking into account (12), equations (9) take the 
form 

Functions G 3 ( x , y ) ,  F 3 ( u )  and V ( x , y )  are still undetermined, while R can be found 
from (14). 

Equations (18) and (10) are too complicated to be treated in their general form. 
In the next section several examples will be given for special cases. 
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3. Examples of logarithmic integrals of motion 

In this section we find particular solutions of (10) and (18) for some special values of 
the constants 6, E ,  5 and a, P, y. In all cases we take E = 1, but the results can easily 
be generalised also for E # 1. 

(a) Case 6 = a = p = 0 

In this case we can put y = 1 and, performing a suitable rotation of the coordinate 
system, 5 can be put equal to 0. From (15) we have U = y and I takes the form 

I = x + F3( y ) + lnl y + G,/ (19)  

G3, = n ( y  1 (2Oa) 

G,), = U, (206) 

while (18) and (10) become 

and 

G3 U% + U, = 0. 

From (20) we get 

G3 = x ~ ( Y )  + f ( ~ )  

U, = -G3G3, 

while combining (21) with (20b) we find 

that is 

U = -fG:+ g ( X )  

where f and g are arbitrary functions of y and x, respectively. 
Taking into account (22) and  (24), (20b) yields 

fl2+S2,. = k (25a) 

nf+fv = I (25b) 

g, = k x + l  (25c) 

g = i k x 2  + Ix. (26) 
The additive constant in g is merely an  additive constant in V so it is put equal to 
zero. In the following we consider the two cases k = 0 and k # 0. 

where k, 1 are arbitrary constants. Equation (25c) gives 

( a l )  Subcase k = 0 

In this case (25a), after a suitable translation with respect to the y axis is performed, 
gives 

n = l/y. (27) 

F3 = -In/ y J  (28) 

By (14) we take 
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and after solving (25) and performing a suitable translation with respect to the x axis, 
equations (22) and (23) give 

G3 = X/ y + ly/2 (29) 

and 

U =  -;(x/y+Iy/2)2+Ix. 

(a2) Subcase k # 0 

By a suitable translation with respect to the x axis, we can put 1 = O .  R andf  can be 
obtained from (25a)  and (25b), respectively, and, using (22), (23) and (14), after a 
suitable translation with respect to the y axis, we take for k = A ' >  0 

R = A tanh(Ay) 

F3 = -In cosh(Ay) 

G, = [Ax sinh(Ay)+ p]/cosh(Ay) 
= - ~ G : + ; A ~ ~ ~  

and for k = - A 2 < 0  

R =  - A  tan(Ay) 

F3 = -lnlcos(Ay)l 

G, = [-Ax sin( Ay) + p]/cos( Ay) 
U=-'GZ-' 2 2 

2 3 2Ax 

where A, p are arbitrary constants. 

(b) Case 6 = a = 0, /? # 0 

Again, by a suitable rotation of the axes 5 can be put equal to 0, so that U = y. In this 
case I has the form ( p  can be chosen equal to 1) 

I = x + F3(y) + lnlx + yy + G,) 

and (18) and (10) become, respectively, 

G x  = Y W Y )  + U, 

Gy = -W) + rux 
and 

(G3+  l ) U x +  yU,, = 0. 

U =  G,-yR(y)x+g(y)  

YG,, - G3.V = W y ) ( l +  Y') 

G3 = (1 + r'F3 +f( Yy + x)  

From (31a) we obtain 

while by combining (31a) and (31b) we get the equation 

with the solution 

(33) 

(34) 
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where f and  g are arbitrary functions and  (14) has also been taken into account. 
Functions fl(y),  g ( y )  and f ( y y + x )  must be such that (32) holds. We will not find all 
possible solutions but we will find examples in three subcases, namely F3 = 0, f = 0 
and f = y y + x .  

( b l )  Subcase F3 = 0 

In this case we also have R = 0 .  Equation (32), taking into account (33) and (34), 
becomes 

f’cf+ 1 + y 2 )  = -Yg, = k (35) 

where a prime denotes differentiation with respect to y y + x  and k is an  arbitrary 
non-zero constant (case k = 0 is trivial). 

From (35), after performing suitable translations, we get 

g = - k y l y  

and 

f = ( 1 + y 2 )  [ -1* ( 1+ 2k(YY+X))””  
( 1  + Y 2 I 2  

which determine completely functions U and G3 

(b2) Subcase f = 0 

Equation (32) becomes 

-yxR, = f l [ l +  ( 1  + y 2 ) (  1 + F J ]  - g y  

which gives 

fl = k = constant 

i.e. 

F , = - k y  

and 

g = -$k2 ( 1 + y 2 ) y 2 +  k ( 2 + y 2 ) y .  

From (33) and  (34) we get 

U = k ( y  - Y X )  - i k 2 (  1 + y z ) y 2  

and 

G3 = - k (  1 + y 2 ) y .  

(b3) Subcase f = y y + x  

If we differentiate ( 3 2 )  with respect to x, taking into account (33) and (34), we obtain 

y 2 R , + y R - 1 = 0  

R = 1 1  -exp(-y l  y ) l / y  

with the solution 
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where again a suitable parallel translation of the y axis has been performed. From 
(14) we get 

F3 = -y/ y - exp(-y/ 7) 

g = (1 + y2-y/y)  exp(-y/y) -+(I + r2) exp(-2y/y)+y/y. 

G3 = - Y / Y  + x - (1 + y2) exp(-y/y) 

u = ( x - y / y ) e x p ( - y / y ) - ~ ( 1 + y 2 ) e x p ( - 2 y / y ) .  

while (32) gives 

Equations (33) and (34) now become 

and 

(c) Case 6 = 0, Q # 0 

In this case we can put Q = 1 and by a suitable translation and rotation, /3 = y = 5 = 0. 
The integral I has the form 

I = x + F3(y) + In1 i y  - xy + G31 

and (18) become 

G3x = - ~ R ( Y  1 + Y 
G3, = -yR(y) -XU,. 

Combining (36) we get 

xG3x +yG3, = - (x2+y2)n(y)  
with the solution 

G3 = -(I  + X 2 / Y 2 )  Y W Y )  dY +f (x /y )  

U =  G 3 / y + ~ ( y ) x 2 / 2 y + g ( y )  

while from (36a) we obtain 

where f, g are arbitrary functions. 
In order to find an example for this case, we select 

n = l / y  

i.e. 

F3 = -1nlyl. 

The remaining equation (10) takes the form 

(1/w)fdf(w)/dw=y3 dg(y)/dy 
where w = x/y, which yields 

f = ( k2 + c2x2/y2) I" g = -c2/2y2 
where k and c are arbitrary constants, so I and U take the form 

I = x + 1 n ~ x - x ~ / y + ( c 2 x 2 +  k2y2)1'2/y2-x2/y2- 11 

U = -(x'+ c ' ) / ~ Y ' + ( c ~ x * +  k2y2)"*/y2. 
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4. Comments and conclusions 

In this paper seven examples of integrable velocity-dependent potentials which possess, 
in addition to the energy integral 

E = f ( x 2 + $ 2 ) +  U ( x , y )  

a second invariant with a logarithmic part in the velocity terms, are found. These 
examples are given in table 1. 

Example I is related to the case (4.26) of Hietarinta (1986, p 80) while, for 1 = 0, 
it corresponds to the system given by Hietarinta ( 1984). 

Example I11 is also related to case ( 4 . 2 ~ )  given in Hietarinta (1986, p 81). 
Example IV is of particular interest since it is the sole example of a velocity- 

independent potential possessing a logarithmic invariant. In this case, integral I does 
not have a good time reflection parity in the sense of Hietarinta (1986, p 13), while 
the Hamiltonian does. Thus the invariant I can be decomposed in the following way: 

I ,  = ; [ I (  t )  + I ( - t ) ]  = f 1nlG: - (x  + yy)21 

I -  = + [ I (  t )  - I (  - r ) ]  = x + f  hl[( G3 + x + y$)/( G3 - x  - y$)l 

where I ( - t )  is I after time reflection. Both I ,  and I -  are independent integrals of 
motion with good time reflection parity, so the systems of example IV are superin- 
tegrable. A simpler realisation of I ,  is obviously 

IT=G:-(X+y$)'. 

In figure 1, some of the orbits of this system are given for the special values 
k = 2, y = 1 where the plus sign in G, has been selected. All orbits correspond to the 
initial conditions xo = yo = 0, E = 4 while lo varies. The broken line x + y = 0 corre- 
sponds to the solution 

(x - y )  = - t 2  + (x,, -9") t. 
All the orbits above this solution tend to infinity, while all orbits below sink into the 
singularity x + y = - 1. 

Figure 1.  Orbits for the system of example IV for k = 2, y = 1 .  All orbits correspond to 
initial conditions x,, = yo = 0, E = 4. 
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There is no doubt that more complicated particular solutions of the equations given 
in this paper can also be obtained in each case, but the calculations may become 
tedious. It seems, however, that systems possessing an invariant, which includes a 
logarithmic term in the velocities, are not the exception among integrable velocity- 
dependent potentials. 
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